An Introduction to Deep Learning on Meshes [Half-Day Course]
Event Type
Hybrid Formats
Registration Categories
DescriptionThe irrefutable success of deep learning on images and text has sparked significant interest in its applicability to 3D geometric data. This course aims to outline the key challenges of using deep learning on the irregular mesh representation for problems in geometry processing. The fundamentals of deep learning are presented from a geometry-centric point of view. Starting with foundations of machine learning, and then going through both fundamental machine learning as well as modern deep learning concepts. Then the course covers techniques and operators for applying convolutional neural networks on meshes, as well as geometric loss functions.The course also contains a practical component, which involves building a neural network for meshes from scratch using PyTorch. Our course materials and examples will be open sourced. We plan to continue to maintain and update course examples as the field progresses. Our goal is to provide a permanent online resource which contains a combination of theory and hands-on exercises, that enables easily incorporating deep learning in geometry processing research.