Close

Presentation

Ensemble Denoising for Monte Carlo Renderings
Event Type
Technical Papers
Hybrid Formats
Registration Categories
TimeFriday, December 1711:11am - 11:22am JST
LocationHall B5 (1) (5F, B Block) & Virtual Platform
DescriptionVarious denoising methods have been proposed to clean up the noise in Monte Carlo (MC) renderings, each having different advantages, disadvantages, and applicable scenarios. In this paper, we present Ensemble Denoising, an optimization-based technique that combines multiple individual MC denoisers. The combined image is modeled as a per-pixel weighted sum of output images from the individual denoisers. Computation of the optimal weights is formulated as a constrained quadratic programming problem, where we apply a dual-buffer strategy to estimate the overall MSE. We further propose an iterative solver to overcome practical issues involved in the optimization. Besides nice theoretical properties, our ensemble denoiser is demonstrated to be effective and robust and outperforms any individual denoiser across dozens of scenes and different levels of sample rates. We also perform a comprehensive analysis on the selection of individual denoisers to be combined, providing important and practical guides for users.